If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+5-10-8b=0
We add all the numbers together, and all the variables
b^2-8b-5=0
a = 1; b = -8; c = -5;
Δ = b2-4ac
Δ = -82-4·1·(-5)
Δ = 84
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{84}=\sqrt{4*21}=\sqrt{4}*\sqrt{21}=2\sqrt{21}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{21}}{2*1}=\frac{8-2\sqrt{21}}{2} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{21}}{2*1}=\frac{8+2\sqrt{21}}{2} $
| 3x+6=7x+5 | | x^2+0.5x+2=0 | | (1/25)^x-2=125^x/3 | | 4p=2p+14.2 | | k/16=26 | | -0.05x²+0.6x+2=0 | | 17.95-75x=113.20 | | 1x+(-4)=-3.2 | | 5x-10=8x+1 | | 17.95-75x=133.20 | | 7k/3=12 | | 11+n/2=-5 | | u/4-7=8 | | 10x−2.7−4x=6x | | 19(g+2)=7g-8-(5g+5) | | 9x-21=7x-21 | | 5+4j/4+j=0 | | 7x-34=22 | | d-2/4=d+1/3 | | 2x^2-15x+24=O | | 5d+18=15d-24-4d | | 1/2(10p+2)=p+7 | | 15x-26=6x-(x+2)+(-x+3) | | 6a+6=a-9 | | b/7-12=8 | | 1x+9=9 | | -9(-9+a)=279 | | (4x-5)°=x° | | 4i-8=12 | | x/22=-23 | | X+3y=384 | | 1/3b+4=14 |